Autonomously estimating particle size using highfrequency fluctuations in optical measurements

Results from a NASA Earth and Space Science Fellowship

Nathan Briggs, Mary Jane Perry, Ivona Cetinić, Nicole Poulton, Michael Sieracki, Craig Lee, Eric D'Asaro, Wayne Slade, Emmanuel Boss

Special Thanks

George Jackson
Andy Thomas

Jim Loftin Crew of R.V. Knorr

Fellowship goal: autonomous estimates of particle size

Motivation

- 1. Greatly increase coverage of particle size measurements (using existing, widely available technology)
- 2. Connect size with other in situ measurements (e.g., export flux).
- 3. Test satellite size products globally

White Method

Randomly spaced particles moving through a sensor volume will create a variable signal

Many small particles yield a stable signal

Fewer, larger particles yield a more variable signal

Really big, rare particles make big, isolated spikes

Such spikes can be analyzed separately (e.g. sinking aggregates in the twilight zone)

Here I focus on the first two cases

Here I focus on the first two cases

If we assume random distribution of particles and no other sources of variance, we obtain this proxy for size:

$$\frac{\text{var(Chl F)}}{\overline{\text{Chl F}}} = \underset{\text{per particle}}{\text{mean Chl F}} \longrightarrow \underset{\text{size proxy}}{\text{phytoplankton}}$$

$$\frac{\text{var(b}_{bp})}{\overline{b}_{bp}} = \underset{\text{per particle}}{\text{mean b}_{bp}} \longrightarrow \underset{\text{proxy}}{\text{particle size}}$$

More details in Briggs et al. (2013)

Lab validation: Backscattering size proxy accurately predicts mean diameters above 10 μm

Lab validation: Backscattering size proxy accurately predicts mean diameters above 10 µm

Field application

Showing ship and glider data from the 2008 North Atlantic Bloom project (NAB08)

Phytoplankton size proxy correlates with diatom fraction during the North Atlantic spring bloom

Particle size proxy not yet validated in situ

$$\frac{\text{var}(b_{bp})}{\overline{b_{bp}}} = \frac{\text{mean } b_{bp}}{\text{per particle}} \rightarrow \frac{\text{particle size}}{\text{proxy}}$$

Glider chl fluorescence and backscattering show surface bloom evolution

